Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50.251
Filtrar
1.
Sci Rep ; 14(1): 8598, 2024 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615146

RESUMO

Pseudomonas aeruginosa is a major cause of nosocomial infections and the leading cause of chronic lung infections in cystic fibrosis and chronic obstructive pulmonary disease patients. Antibiotic treatment remains challenging because P. aeruginosa is resistant to high concentrations of antibiotics and has a remarkable ability to acquire mutations conferring resistance to multiple groups of antimicrobial agents. Here we report that when P. aeruginosa is plated on ciprofloxacin (cipro) plates, the majority of cipro-resistant (ciproR) colonies observed at and after 48 h of incubation carry mutations in genes related to the Stringent Response (SR). Mutations in one of the major SR components, spoT, were present in approximately 40% of the ciproR isolates. Compared to the wild-type strain, most of these isolates had decreased growth rate, longer lag phase and altered intracellular ppGpp content. Also, 75% of all sequenced mutations were insertions and deletions, with short deletions being the most frequently occurring mutation type. We present evidence that most of the observed mutations are induced on the selective plates in a subpopulation of cells that are not instantly killed by cipro. Our results suggests that the SR may be an important contributor to antibiotic resistance acquisition in P. aeruginosa.


Assuntos
Ciprofloxacina , Infecções por Pseudomonas , Humanos , Ciprofloxacina/farmacologia , Pseudomonas aeruginosa/genética , Infecções por Pseudomonas/tratamento farmacológico , Antibacterianos/farmacologia , Placas Ósseas
2.
J Vis Exp ; (205)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38619254

RESUMO

The environmental bacterium Pseudomonas aeruginosa is an opportunistic pathogen with high antibiotic resistance that represents a health hazard. This bacterium produces high levels of biosurfactants known as rhamnolipids (RL), which are molecules with significant biotechnological value but are also associated with virulence traits. In this respect, the detection and quantification of RL may be useful for both biotechnology applications and biomedical research projects. In this article, we demonstrate step-by-step the technique to detect the production of the two forms of RL produced by P. aeruginosa using thin-layer chromatography (TLC): mono-rhamnolipids (mRL), molecules constituted by a dimer of fatty acids (mainly C10-C10) linked to one rhamnose moiety, and di-rhamnolipids (dRL), molecules constituted by a similar fatty acid dimer linked to two rhamnose moieties. Additionally, we present a method to measure the total amount of RL based on the acid hydrolysis of these biosurfactants extracted from a P. aeruginosa culture supernatant and the subsequent detection of the concentration of rhamnose that reacts with orcinol. The combination of both techniques can be used to estimate the approximate concentration of mRL and dRL produced by a specific strain, as exemplified here with the type strains PAO1 (phylogroup 1), PA14 (phylogroup 2), and PA7 (phylogroup 3).


Assuntos
Decanoatos , Glicolipídeos , Infecções por Pseudomonas , Ramnose/análogos & derivados , Humanos , Pseudomonas aeruginosa , Biotecnologia , Ácidos Graxos
3.
Proc Natl Acad Sci U S A ; 121(15): e2313004121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38564631

RESUMO

Polyphosphate (polyP) synthesis is a ubiquitous stress and starvation response in bacteria. In diverse species, mutants unable to make polyP have a wide variety of physiological defects, but the mechanisms by which this simple polyanion exerts its effects remain unclear. One possibility is that polyP's many functions stem from global effects on the biophysical properties of the cell. We characterize the effect of polyphosphate on cytoplasmic mobility under nitrogen-starvation conditions in the opportunistic pathogen Pseudomonas aeruginosa. Using fluorescence microscopy and particle tracking, we quantify the motion of chromosomal loci and cytoplasmic tracer particles. In the absence of polyP and upon starvation, we observe a 2- to 10-fold increase in mean cytoplasmic diffusivity. Tracer particles reveal that polyP also modulates the partitioning between a "more mobile" and a "less mobile" population: Small particles in cells unable to make polyP are more likely to be "mobile" and explore more of the cytoplasm, particularly during starvation. Concomitant with this larger freedom of motion in polyP-deficient cells, we observe decompaction of the nucleoid and an increase in the steady-state concentration of ATP. The dramatic polyP-dependent effects we observe on cytoplasmic transport properties occur under nitrogen starvation, but not carbon starvation, suggesting that polyP may have distinct functions under different types of starvation.


Assuntos
Polifosfatos , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Polifosfatos/metabolismo , Citoplasma/metabolismo , Citosol/metabolismo
4.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612931

RESUMO

Citrocin is an anti-microbial peptide that holds great potential in animal feed. This study evaluates the anti-microbial and anti-biofilm properties of Citrocin and explores the mechanism of action of Citrocin on the biofilm of P. aeruginosa. The results showed that Citrocin had a significant inhibitory effect on the growth of P. aeruginosa with a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 0.3 mg/mL. All five concentrations (1/4MIC, 1/2MIC, MIC, 2MIC, and 4MIC) of Citrocin inhibited P. aeruginosa biofilm formation. Citrocin at the MIC, 2MIC and 4MIC removed 42.7%, 76.0% and 83.2% of mature biofilms, respectively, and suppressed the swarming motility, biofilm metabolic activity and extracellular polysaccharide production of P. aeruginosa. Metabolomics analysis indicated that 0.3 mg/mL of Citrocin up- regulated 26 and down-regulated 83 metabolites, mainly comprising amino acids, fatty acids, organic acids and sugars. Glucose and amino acid metabolic pathways, including starch and sucrose metabolism as well as arginine and proline metabolism, were highly enriched by Citrocin. In summary, our research reveals the anti-biofilm mechanism of Citrocin at the metabolic level, which provides theoretical support for the development of novel anti-biofilm strategies for combatting P. aeruginosa.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Polissacarídeos , Amido , Aminoácidos , Biofilmes , Peptídeos
5.
Sensors (Basel) ; 24(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38610253

RESUMO

Confronting the challenge of biofilm resistance and widespread antimicrobial resistance (AMR), this study emphasizes the need for innovative monitoring methods and explores the potential of bacteriophages against bacterial biofilms. Traditional methods, like optical density (OD) measurements and confocal microscopy, crucial in studying biofilm-virus interactions, often lack real-time monitoring and early detection capabilities, especially for biofilm formation and low bacterial concentrations. Addressing these gaps, we developed a new real-time, label-free radiofrequency sensor for monitoring bacteria and biofilm growth. The sensor, an open-ended coaxial probe, offers enhanced monitoring of bacterial development stages. Tested on a biological model of bacteria and bacteriophages, our results indicate the limitations of traditional OD measurements, influenced by factors like sedimented cell fragments and biofilm formation on well walls. While confocal microscopy provides detailed 3D biofilm architecture, its real-time monitoring application is limited. Our novel approach using radio frequency measurements (300 MHz) overcomes these shortcomings. It facilitates a finer analysis of the dynamic interaction between bacterial populations and phages, detecting real-time subtle changes. This method reveals distinct phases and breakpoints in biofilm formation and virion interaction not captured by conventional techniques. This study underscores the sensor's potential in detecting irregular viral activity and assessing the efficacy of anti-biofilm treatments, contributing significantly to the understanding of biofilm dynamics. This research is vital in developing effective monitoring tools, guiding therapeutic strategies, and combating AMR.


Assuntos
Bacteriófagos , Infecções por Pseudomonas , Animais , Pseudomonas aeruginosa , Comportamento Predatório , Biofilmes
6.
Microbiol Res ; 283: 127707, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582011

RESUMO

Salinity stress badly restricts the growth, yield and quality of vegetable crops. Plant growth-promoting rhizobacteria (PGPR) is a friendly and effective mean to enhance plant growth and salt tolerance. However, information on the regulatory mechanism of PGPR on vegetable crops in response to salt stress is still incomplete. Here, we screened a novel salt-tolerant PGPR strain Pseudomonas aeruginosa HG28-5 by evaluating the tomatoes growth performance, chlorophyll fluorescence index, and relative electrolyte leakage (REL) under normal and salinity conditions. Results showed that HG28-5 colonization improved seedling growth parameters by increasing the plant height (23.7%), stem diameter (14.6%), fresh and dry weight in the shoot (60.3%, 91.1%) and root (70.1%, 92.5%), compared to salt-stressed plants without colonization. Likewise, HG28-5 increased levels of maximum photochemical efficiency of PSII (Fv/Fm) (99.3%), the antioxidant enzyme activities as superoxide dismutase (SOD, 85.5%), peroxidase (POD, 35.2%), catalase (CAT, 20.6%), and reduced the REL (48.2%), MDA content (41.3%) and ROS accumulation in leaves of WT tomatoes under salt stress in comparison with the plants treated with NaCl alone. Importantly, Na+ content of HG28-5 colonized salt-stressed WT plants were decreased by15.5% in the leaves and 26.6% in the roots in the corresponding non-colonized salt-stressed plants, which may be attributed to the higher K+ concentration and SOS1, SOS2, HKT1;2, NHX1 transcript levels in leaves of colonized plants under saline condition. Interestingly, increased abscisic acid (ABA) content and upregulation of ABA pathway genes (ABA synthesis-related genes NCED1, NCED2, NCED4, NECD6 and signal genes ABF4, ABI5, and AREB) were observed in HG28-5 inoculated salt-stressed WT plants. ABA-deficient mutant (not) with NCED1 deficiency abolishes the effect of HG28-5 on alleviating salt stress in tomato, as exhibited by the substantial rise of REL and ROS accumulation and sharp drop of Fv/Fm in the leaves of not mutant plants. Notably, HG28-5 colonization enhances tomatoes fruit yield by 54.9% and 52.4% under normal and saline water irrigation, respectively. Overall, our study shows that HG28-5 colonization can significantly enhance salt tolerance and improved fruit yield by a variety of plant protection mechanism, including reducing oxidative stress, regulating plant growth, Na+/K+ homeostasis and ABA signaling pathways in tomato. The findings not only deepen our understanding of PGPR regulation plant growth and salt tolerance but also allow us to apply HG28-5 as a microbial fertilizer for agricultural production in high-salinity areas.


Assuntos
Alphaproteobacteria , Solanum lycopersicum , Pseudomonas aeruginosa/metabolismo , Tolerância ao Sal , Espécies Reativas de Oxigênio , Homeostase , Ácido Abscísico/metabolismo , Antioxidantes , Transdução de Sinais
7.
Microbiology (Reading) ; 170(3)2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38568202

RESUMO

Understanding the evolution of antibiotic resistance is important for combating drug-resistant bacteria. In this work, we investigated the adaptive response of Pseudomonas aeruginosa to ciprofloxacin. Ciprofloxacin-susceptible P. aeruginosa ATCC 9027, CIP-E1 (P. aeruginosa ATCC 9027 exposed to ciprofloxacin for 14 days) and CIP-E2 (CIP-E1 cultured in antibiotic-free broth for 10 days) were compared. Phenotypic responses including cell morphology, antibiotic susceptibility, and production of pyoverdine, pyocyanin and rhamnolipid were assessed. Proteomic responses were evaluated using comparative iTRAQ labelling LC-MS/MS to identify differentially expressed proteins (DEPs). Expression of associated genes coding for notable DEPs and their related regulatory genes were checked using quantitative reverse transcriptase PCR. CIP-E1 displayed a heterogeneous morphology, featuring both filamentous cells and cells with reduced length and width. By contrast, although filaments were not present, CIP-E2 still exhibited size reduction. Considering the MIC values, ciprofloxacin-exposed strains developed resistance to fluoroquinolone antibiotics but maintained susceptibility to other antibiotic classes, except for carbapenems. Pyoverdine and pyocyanin production showed insignificant decreases, whereas there was a significant decrease in rhamnolipid production. A total of 1039 proteins were identified, of which approximately 25 % were DEPs. In general, there were more downregulated proteins than upregulated proteins. Noted changes included decreased OprD and PilP, and increased MexEF-OprN, MvaT and Vfr, as well as proteins of ribosome machinery and metabolism clusters. Gene expression analysis confirmed the proteomic data and indicated the downregulation of rpoB and rpoS. In summary, the response to CIP involved approximately a quarter of the proteome, primarily associated with ribosome machinery and metabolic processes. Potential targets for bacterial interference encompassed outer membrane proteins and global regulators, such as MvaT.


Assuntos
Ciprofloxacina , Infecções por Pseudomonas , Humanos , Ciprofloxacina/farmacologia , Pseudomonas aeruginosa/genética , Cromatografia Líquida , Proteômica , Piocianina , Espectrometria de Massas em Tandem , Antibacterianos/farmacologia
8.
Science ; 384(6691): eadl0635, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574145

RESUMO

The retractile type IV pilus (T4P) is important for virulence of the opportunistic human pathogen Pseudomonas aeruginosa. The single-stranded RNA (ssRNA) phage PP7 binds to T4P and is brought to the cell surface through pilus retraction. Using fluorescence microscopy, we discovered that PP7 detaches T4P, which impairs cell motility and restricts the pathogen's virulence. Using cryo-electron microscopy, mutagenesis, optical trapping, and Langevin dynamics simulation, we resolved the structure of PP7, T4P, and the PP7/T4P complex and showed that T4P detachment is driven by the affinity between the phage maturation protein and its bound pilin, plus the pilus retraction force and speed, and pilus bending. Pilus detachment may be widespread among other ssRNA phages and their retractile pilus systems and offers new prospects for antibacterial prophylaxis and therapeutics.


Assuntos
Fímbrias Bacterianas , Fagos de Pseudomonas , Pseudomonas aeruginosa , Vírus de RNA , Internalização do Vírus , Humanos , Microscopia Crioeletrônica , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/virologia , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/virologia , Vírus de RNA/química , Vírus de RNA/fisiologia , Fagos de Pseudomonas/química , Fagos de Pseudomonas/fisiologia , Proteínas Virais/metabolismo
9.
Chemosphere ; 355: 141863, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579955

RESUMO

Bifenthrin (BF) is ubiquitous in aquatic environments, and studies have indicated that environmental concentrations of BF could cause neurotoxicity and oxidative damage in fish and decrease the abundance of aquatic insects. However, little information is available on the toxicity of BF in freshwater benthic mollusks. Bellamya aeruginosa (B. aeruginosa) is a key benthic fauna species in aquatic ecosystems, and has extremely high economic and ecological values. In this study, larval B. aeruginosa within 24 h of birth were exposed to 0, 30 or 300 ng/L of BF for 30 days, and then the toxic effects from molecular to individual levels were comprehensively evaluated in all the three treatment groups. It was found that BF at 300 ng/L caused the mortality of snails. Furthermore, BF affected snail behaviors, evidenced by reduced crawling distance and crawling speed. The hepatopancreas of snails in the two BF exposure groups showed significant pathological changes, including increase in the number of yellow granules and occurrence of hemocyte infiltration, epithelial cell thinning, and necrosis. The levels of ROS and MDA were significantly increased after exposure to 300 ng/L BF, and the activities of two antioxidant enzymes SOD and CAT were increased significantly. GSH content decreased significantly after BF exposure, indicating the occurrence of oxidative damage in snails. Transcriptomic results showed that differentially expressed genes (DEGs) were significantly enriched in pathways related to metabolism and neurotoxicity (e.g., oxidative phosphorylation and Parkinson disease), and these results were consistent with those in individual and biochemical levels above. The study indicates that environmental concentration of BF results in decreased survival rates, sluggish behavior, histopathological lesions, oxidative damage, and transcriptomic changes in the larvae of B. aeruginosa. Thus, exposure of larval snails to BF in the wild at concentrations similar to those used in this study might have adverse consequences at the population level. These findings provide a theoretical basis for further assessing the ecological risk of BF to aquatic gastropods.


Assuntos
Gastrópodes , Pseudomonas aeruginosa , Piretrinas , Animais , Ecossistema , Larva , Água Doce
10.
BMC Infect Dis ; 24(1): 373, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38565980

RESUMO

BACKGROUND: Bloodstream infections (BSI) are the major cause of morbidity and mortality in children in developing countries. The purpose of the current study was to establish the antimicrobial susceptibility pattern of bacterial isolates from bloodstream infections at Children's Medical Center Hospital (CMC), Tehran, Iran. METHODS: We retrospectively recorded all positive blood cultures and antimicrobial susceptibility of all bloodstream isolates among children admitted to CMC, during 5 years. Specimen culture, bacterial identification, and antimicrobial susceptibility testing were performed according to standard laboratory methods. RESULTS: From 3,179 pathogens isolated from the blood cultures 2,824 bacteria were cultured, with 1,312 cases being identified as Gram-positive bacteria (46%) and 1,512 cases as Gram-negative bacteria (54%). The most common Gram-negative bacteria isolated were as follows: Pseudomonas spp. (n = 266, 17.6%), Klebsiella pneumoniae (n = 242, 16%), Stenotrophomonas maltophilia (n = 204, 13.5%), Enterobacter spp. (n = 164, 10.8%), Escherichia coli (n = 159, 10.5%), Pseudomonas aeruginosa (n = 126, 8.3%), Serratia marcescens (n = 121, 8%), and Acinetobacter baumannii (n = 73, 4.8%). The most common Gram-positive bacteria isolated were coagulase-negative staphylococci (CONS) (n = 697, 53%), Streptococcus spp. (n = 237, 18%), Staphylococcus aureus (n = 202, 15%) and Enterococcus spp. (n = 167, 12.7%). 34% of bacterial strains were isolated from ICUs. The rates of methicillin resistance in S. aureus and CONS were 34% and 91%, respectively. E. coli isolates showed high resistance to cefotaxime (84%). All isolates of K. pneumoniae were susceptible to colistin and 56% were susceptible to imipenem. P. aeruginosa isolates showed high susceptibility to all antibiotics. CONCLUSIONS: Our findings emphasize the need of clinicians having access to up-to-date bacterial susceptibility data for routinely prescribed drugs. Continuous monitoring of changes in bacterial resistance will aid in the establishment of national priorities for local intervention initiatives in Iran. The increased risk of BSI caused by antibiotic-resistant organisms, emphasizes the significance of implementing appropriate antibiotic prescribing regulations and developing innovative vaccination techniques in Iran.


Assuntos
Bacteriemia , Sepse , Infecções Estafilocócicas , Humanos , Criança , Antibacterianos/farmacologia , Irã (Geográfico)/epidemiologia , Staphylococcus aureus , Escherichia coli , Estudos Retrospectivos , Bacteriemia/epidemiologia , Bacteriemia/microbiologia , Farmacorresistência Bacteriana , Bactérias , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Staphylococcus , Pseudomonas aeruginosa , Klebsiella pneumoniae , Pseudomonas , Encaminhamento e Consulta , Hospitais , Testes de Sensibilidade Microbiana
12.
J Vis Exp ; (205)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38557954

RESUMO

Pseudomonas aeruginosa (P. aeruginosa) is known for its production of a diverse range of virulence factors to establish infections in the host. One such mechanism is the scavenging of iron through siderophore production. P. aeruginosa produces two different siderophores: pyochelin, which has lower iron-chelating affinity, and pyoverdine, which has higher iron-chelating affinity. This report demonstrates that pyoverdine can be directly quantified from bacterial supernatants, while pyochelin needs to be extracted from supernatants before quantification. The primary method for qualitatively analyzing siderophore production is the Chrome Azurol Sulfonate (CAS) agar plate assay. In this assay, the release of CAS dye from the Fe3+-Dye complex leads to a color change from blue to orange, indicating siderophore production. For the quantification of total siderophores, bacterial supernatants were mixed in equal proportions with CAS dye in a microtiter plate, followed by spectrophotometric analysis at 630 nm. Pyoverdine was directly quantified from the bacterial supernatant by mixing it in equal proportions with 50 mM Tris-HCl, followed by spectrophotometric analysis. A peak at 380 nm confirmed the presence of pyoverdine. As for Pyochelin, direct quantification from the bacterial supernatant was not possible, so it had to be extracted first. Subsequent spectrophotometric analysis revealed the presence of pyochelin, with a peak at 313 nm.


Assuntos
Infecções por Pseudomonas , Sideróforos , Tiazóis , Humanos , Pseudomonas aeruginosa , Fenóis , Quelantes de Ferro , Infecções por Pseudomonas/microbiologia
13.
J Wound Care ; 33(Sup4a): xcix-cx, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38588056

RESUMO

Metal-based nanoparticles (MNPs) are promoted as effective compounds in the treatment of bacterial infections and as possible alternatives to antibiotics. These MNPs are known to affect a broad spectrum of microorganisms using a multitude of strategies, including the induction of reactive oxygen species and interaction with the inner structures of the bacterial cells. The aim of this review was to summarise the latest studies about the effect of metal-based nanoparticles on pathogenic bacterial biofilm formed in wounds, using the examples of Gram-positive bacterium Staphylococcus aureus and Gram-negative bacterium Pseudomonas aeruginosa, as well as provide an overview of possible clinical applications.


Assuntos
Nanopartículas , Infecções Estafilocócicas , Infecção dos Ferimentos , Humanos , Biofilmes , Staphylococcus aureus , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Pseudomonas aeruginosa , Nanopartículas/uso terapêutico , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia
14.
Appl Microbiol Biotechnol ; 108(1): 294, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598011

RESUMO

Understanding the dynamic change in abundance of both fecal and opportunistic waterborne pathogens in urban surface water under different abiotic and biotic factors helps the prediction of microbiological water quality and protection of public health during recreational activities, such as swimming. However, a comprehensive understanding of the interaction among various factors on pathogen behavior in surface water is missing. In this study, the effect of salinity, light, and temperature and the presence of indigenous microbiota, on the decay/persistence of Escherichia coli and Pseudomonas aeruginosa in Rhine River water were tested during 7 days of incubation with varying salinity (0.4, 5.4, 9.4, and 15.4 ppt), with light under a light/dark regime (light/dark) and without light (dark), temperature (3, 12, and 20 °C), and presence/absence of indigenous microbiota. The results demonstrated that light, indigenous microbiota, and temperature significantly impacted the decay of E. coli. Moreover, a significant (p<0.01) four-factor interactive impact of these four environmental conditions on E. coli decay was observed. However, for P. aeruginosa, temperature and indigenous microbiota were two determinate factors on the decay or growth. A significant three-factor interactive impact between indigenous microbiota, temperature, and salinity (p<0.01); indigenous microbiota, light, and temperature (p<0.01); and light, temperature, and salinity (p<0.05) on the decay of P. aeruginosa was found. Due to these interactive effects, caution should be taken when predicting decay/persistence of E. coli and P. aeruginosa in surface water based on a single environmental condition. In addition, the different response of E. coli and P. aeruginosa to the environmental conditions highlights that E. coli monitoring alone underestimates health risks of surface water by non-fecal opportunistic pathogens, such as P. aeruginosa. KEY POINTS: Abiotic and biotic factors interactively affect decay of E. coli and P. aeruginosa E.coli and P.aeruginosa behave significantly different under the given conditions Only E. coli as an indicator underestimates the microbiological water quality.


Assuntos
Escherichia coli , Pseudomonas aeruginosa , Rios , Fezes , Água Doce
15.
J Med Chem ; 67(7): 5721-5743, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38564271

RESUMO

With the increasing problem of bacterial resistance to traditional antibiotics, there is an urgent need for new antibacterial agents with novel mechanisms to treat infections caused by drug-resistant bacteria. In this paper, we designed and synthesized 2-phenoxyalkylhydrazide benzoxazole derivatives and evaluated their quorum sensing inhibition activity. Among them, 26c at a concentration of 102.4 µg/mL not only inhibited the production of pyocyanin and rhamnolipid by 45.6% and 38.3%, respectively, but also suppressed 76.6% of biofilm production at 32 µg/mL. In addition, 26c did not affect bacterial growth, but in a mouse model infected with P. aeruginosa PAO1, it could help ciprofloxacin effectively eliminate the living bacteria. In the targeting experiment, 26c could inhibit the fluorescence intensity of PAO1-lasB-gfp and PAO1-pqsA-gfp in a concentration-dependent manner, indicating that the compound acts on the quorum sensing system. Overall, 26c is worthy of further investigation as a quorum sensing inhibitor with strong antibiofilm effect.


Assuntos
Biofilmes , Percepção de Quorum , Animais , Camundongos , Antibacterianos/farmacologia , Bactérias , Pseudomonas aeruginosa , Fatores de Virulência
16.
Sci Rep ; 14(1): 8310, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594467

RESUMO

Bacterial resistance surveillance is one of the main outputs of microbiological laboratories and its results are important part of antimicrobial stewardship (AMS). In this study, the susceptibility of specific bacteria to selected antimicrobial agents was tested. The susceptibility of 90 unique isolates of pathogens of critical priority obtained from clinically valid samples of ICU patients in 2017-2021 was tested. 50% of these fulfilled difficult-to-treat resistance (DTR) criteria and 50% were susceptible to all antibiotics included in the definition. 10 Enterobacterales strains met DTR criteria, and 2 (20%) were resistant to colistin (COL), 2 (20%) to cefiderocol (FCR), 7 (70%) to imipenem/cilastatin/relebactam (I/R), 3 (30%) to ceftazidime/avibactam (CAT) and 5 (50%) to fosfomycin (FOS). For Enterobacterales we also tested aztreonam/avibactam (AZA) for which there are no breakpoints yet. The highest MIC of AZA observed was 1 mg/l, MIC range in the susceptible cohort was 0.032-0.064 mg/l and in the DTR cohort (incl. class B beta-lactamase producers) it was 0.064-1 mg/l. Two (13.3%) isolates of Pseudomonas aeruginosa (15 DTR strains) were resistant to COL, 1 (6.7%) to FCR, 13 (86.7%) to I/R, 5 (33.3%) to CAT, and 5 (33.3%) to ceftolozane/tazobactam. All isolates of Acinetobacter baumannii with DTR were susceptible to COL and FCR, and at the same time resistant to I/R and ampicillin/sulbactam. New antimicrobial agents are not 100% effective against DTR. Therefore, it is necessary to perform susceptibility testing of these antibiotics, use the data for surveillance (including local surveillance) and conform to AMS standards.


Assuntos
Antibacterianos , Compostos Azabicíclicos , Cefalosporinas , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Estudos Retrospectivos , Aztreonam , 60607 , Bactérias Gram-Negativas , Colistina/farmacologia , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa
17.
PLoS One ; 19(4): e0300887, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38598418

RESUMO

Cooperation via shared public goods is ubiquitous in nature, however, noncontributing social cheaters can exploit the public goods provided by cooperating individuals to gain a fitness advantage. Theory predicts that this dynamic can cause a Tragedy of the Commons, and in particular, a 'Collapsing' Tragedy defined as the extinction of the entire population if the public good is essential. However, there is little empirical evidence of the Collapsing Tragedy in evolutionary biology. Here, we experimentally demonstrate this outcome in a microbial model system, the public good-producing bacterium Pseudomonas aeruginosa grown in a continuous-culture chemostat. In a growth medium that requires extracellular protein digestion, we find that P. aeruginosa populations maintain a high density when entirely composed of cooperating, protease-producing cells but completely collapse when non-producing cheater cells are introduced. We formulate a mechanistic mathematical model that recapitulates experimental observations and suggests key parameters, such as the dilution rate and the cost of public good production, that define the stability of cooperative behavior. We combine model prediction with experimental validation to explain striking differences in the long-term cheater trajectories of replicate cocultures through mutational events that increase cheater fitness. Taken together, our integrated empirical and theoretical approach validates and parametrizes the Collapsing Tragedy in a microbial population, and provides a quantitative, mechanistic framework for generating testable predictions of social behavior.


Assuntos
Bactérias , Comportamento Cooperativo , Humanos , Comportamento Social , Modelos Biológicos , Pseudomonas aeruginosa , Evolução Biológica
18.
Int. microbiol ; 27(2): 349-359, Abr. 2024.
Artigo em Inglês | IBECS | ID: ibc-232285

RESUMO

Nitric oxide (NO), produced through the denitrification pathway, regulates biofilm dynamics through the quorum sensing system in Pseudomonas aeruginosa. NO stimulates P. aeruginosa biofilm dispersal by enhancing phosphodiesterase activity to decrease cyclic di-GMP levels. In a chronic skin wound model containing a mature biofilm, the gene expression of nirS, encoding nitrite reductase to produce NO, was low, leading to reduced intracellular NO levels. Although low-dose NO induces biofilm dispersion, it is unknown whether it influences the formation of P. aeruginosa biofilms in chronic skin wounds. In this study, a P. aeruginosa PAO1 strain with overexpressed nirS was established to investigate NO effects on P. aeruginosa biofilm formation in an ex vivo chronic skin wound model and unravel the underlying molecular mechanisms. Elevated intracellular NO levels altered the biofilm structure in the wound model by inhibiting the expression of quorum sensing–related genes, which was different from an in vitro model. In Caenorhabditis elegans as a slow-killing infection model, elevated intracellular NO levels increased worms’ lifespan by 18%. Worms that fed on the nirS-overexpressed PAO1 strain for 4 h had complete tissue, whereas worms that fed on empty plasmid–containing PAO1 had biofilms on their body, causing severe damage to the head and tail. Thus, elevated intracellular NO levels can inhibit P. aeruginosa biofilm growth in chronic skin wounds and reduce pathogenicity to the host. Targeting NO is a potential approach to control biofilm growth in chronic skin wounds wherein P. aeruginosa biofilms are a persistent problem. (AU)


Assuntos
Humanos , Óxido Nítrico , Biofilmes , Percepção de Quorum , Pseudomonas aeruginosa , Diester Fosfórico Hidrolases
19.
Int. microbiol ; 27(2): 449-457, Abr. 2024. tab, graf
Artigo em Inglês | IBECS | ID: ibc-232292

RESUMO

Indole is a typical heterocyclic compound derived from tryptophan widespread in nature. Pseudomonas aeruginosa is one of the most common opportunistic pathogens everywhere in the world. Indole and P. aeruginosa will encounter inevitably; however, the indole transformation process by P. aeruginosa remains unclear. Herein, an indole-degrading strain of P. aeruginosa Jade-X was isolated from activated sludge. Strain Jade-X could degrade 1 mmol/L indole within 48 h with the inoculum size of 1% (v/v). It showed high efficiency in indole degradation under the conditions of 30–42 °C, pH 5.0–9.0, and NaCl concentration less than 2.5%. The complete genome of strain Jade-X was sequenced which was 6508614 bp in length with one chromosome. Bioinformatic analyses showed that strain Jade-X did not contain the indole oxygenase gene. Three cytochrome P450 genes were identified and up-regulated in the indole degradation process by RT-qPCR analysis, while cytochrome P450 inhibitors did not affect the indole degradation process. It suggested that indole oxidation was catalyzed by an unraveled enzyme. An ant gene cluster was identified, among which the anthranilate 1,2-dioxygenase and catechol 1,2-dioxygenase genes were upregulated. An indole-anthranilate-catechol pathway was proposed in indole degradation by strain P. aeruginosa Jade-X. This study enriched our understanding of the indole biodegradation process in P. aeruginosa.(AU)


Assuntos
Humanos , Biodegradação Ambiental , Genômica , Sistema Enzimático do Citocromo P-450 , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Indóis
20.
J Bacteriol ; 206(4): e0009524, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38564677

RESUMO

Bacterial communities exhibit complex self-organization that contributes to their survival. To better understand the molecules that contribute to transforming a small number of cells into a heterogeneous surface biofilm community, we studied acellular aggregates, structures seen by light microscopy in Pseudomonas aeruginosa colony biofilms using light microscopy and chemical imaging. These structures differ from cellular aggregates, cohesive clusters of cells important for biofilm formation, in that they are visually distinct from cells using light microscopy and are reliant on metabolites for assembly. To investigate how these structures benefit a biofilm community we characterized three recurrent types of acellular aggregates with distinct geometries that were each abundant in specific areas of these biofilms. Alkyl quinolones (AQs) were essential for the formation of all aggregate types with AQ signatures outside the aggregates below the limit of detection. These acellular aggregates spatially sequester AQs and differentiate the biofilm space. However, the three types of aggregates showed differing properties in their size, associated cell death, and lipid content. The largest aggregate type co-localized with spatially confined cell death that was not mediated by Pf4 bacteriophage. Biofilms lacking AQs were absent of localized cell death but exhibited increased, homogeneously distributed cell death. Thus, these AQ-rich aggregates regulate metabolite accessibility, differentiate regions of the biofilm, and promote survival in biofilms.IMPORTANCEPseudomonas aeruginosa is an opportunistic pathogen with the ability to cause infection in the immune-compromised. It is well established that P. aeruginosa biofilms exhibit resilience that includes decreased susceptibility to antimicrobial treatment. This work examines the self-assembled heterogeneity in biofilm communities studying acellular aggregates, regions of condensed matter requiring alkyl quinolones (AQs). AQs are important to both virulence and biofilm formation. Aggregate structures described here spatially regulate the accessibility of these AQs, differentiate regions of the biofilm community, and despite their association with autolysis, correlate with improved P. aeruginosa colony biofilm survival.


Assuntos
Infecções por Pseudomonas , Quinolonas , Humanos , Quinolonas/metabolismo , Biofilmes , Infecções por Pseudomonas/microbiologia , Virulência , Pseudomonas aeruginosa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...